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1. INTRODUCTION  

 

Ecological indicators are used increasingly to assess the conditions and/or status of 

ecosystems. Historically, the first approach was to develop indices based on a particular 

species or components, e.g. macrophytes, zooplankton, etc. In general, such indices are not 

broad enough to reflect the complexity of the ecosystem, as they do not include 

information at the structural, functional and system levels. To cope with these aspects new 

indices have been develop (for recent reviews see Rapport, 1995; Jørgensen et al., 2005) 

that try to synthesyze information at all ecosystem levels. In this project we are interested 

in evaluating indicators in terms of their potential to detect thresholds and point of non-

return in coastal ecosystem. Analyses have so far been mainly carried out using:  

- Specific species or ratio between species. For example, vegetation cover and submerged 

versus floating plant biomassess (Scheffer and Carpenter, 2003);  

- Concentrations of chemical compounds. Total phosphorous (TP) is one of the most used 

indicators for threshold detection, see Scheffer and Carpenter (2003) and Qian et al. 

(2003). Oxygen has also been proposed by Jørgensen (1997) to account for pollution in 

rivers and by Turner and Rabalais (1994) in the Gulf of Mexico. Dose-response curves 

used in toxicology are based on contaminant concentrations (e.g. Klepper and Bedaux, 

1997; Brock et al., 2004); 

- Biodiversity indices. Carpenter (1996) suggested the existence of a threshold between 

ecosystem function and biodiversity, but he did not provide experimental evidence. 

This report aims at providing a comprehensive overview of indicators with 

applicability to the assessment of thresholds of ecosystem integrity in coastal ecosystems. 

A preliminary screening has been performed and indicators suited for identification of 

thresholds have been described. The selected indicators have been divided into seven 

levels according to the classification presented in Jørgensen et al. (2005). The emphasis 

has been placed on these indicators that we believe will be able to detect thresholds and 

points of non-return due to eutrophication as well as contaminants effects, i.e. toxicity and 

bioaccumulation in the food chain, which are two of the main focuses of the project. No 

attempt has been made for covering the economic and social aspects. 

 

2. CRITERIA FOR THE SELECTION OF ECOLOGICAL INDICATORS 

 

Ecological status has been defined in Karr (1991) as referring to the system 

1 



  

wholeness, including the presence of appropriate species, populations and communities 

and the occurrence of ecological processes at appropriate rates and scales, as well as 

environmental conditions that support these taxa and processes. 

Ecological indicators need to capture the complexity of the ecosystem but yet remain 

simple enough to be easily and routinely used. Ideally, monitoring of ecosystem integrity 

should include indicators of the 3 components of the ecological system: the function, the 

composition and the structure. In practice, this is not always the case and indicators are 

developed having in mind specific problems or specific ecosystems. In any case, ecological 

indicators should meet the following criteria (Dale and Beyeler, 2001): 

Be easy to measure • 

• 

• 

• 

• 

• 

• 

• 

Be sensitive to stresses on the system 

Respond to stresses in a predictable manner 

Be anticipatory 

Predict changes that can be averted by management actions 

Be integrative 

Have a known response to disturbances, anthropogenic stresses and changes 

over time 

Have a low variability in response 

The challenge, when assessing ecological status, is to derive a manageable set of 

indicators that together meet these criteria. In our case, we are interested on indicators or 

set of indicators that allow threshold detection in coastal ecosystems. However, at this 

point is not possible to define specific criteria other than the already general ones above 

mentioned. Only through the analysis of the different indicators using data sets from 

several case studies would be possible to develop further criteria concerning suitable 

indicators for thresholds detection. 

 

3. CLASSIFICATION OF THRESHOLDS INDICATORS 

 

The classification proposed by Jørgensen et al. (2005) has been adapted to the 

purpose of structuring the present report. The classification may be summarized according 

to seven levels. Level 1 is based on indicators that are applied to specific coastal species, 

e.g. presence or absence of some characteristic species; level 2 corresponds to the ratio 

between classes of organisms; level 3 uses concentrations of chemical compounds, e.g. 

total phosphorous (Scheffer et al., 2001) or biomarkers; level 4 applies concentration of 
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entire trophic levels, e.g. Chlorophyll-a; level 5 is based on rates of processes in coastal 

ecosystem, e.g. primary production; level 6 covers composite indicators, e.g. 

respiration/production; level 7 is based on holistic indicators, e.g. buffers capacity; and, 

finally, level 8 considers thermodynamic variables able to enclose all ecosystem’s 

characteristics, e.g. exergy. 

 

3.1. Specific species 

Level 1 covers the presence or absence of specific species. Indicators in this level are 

pelagic and benthic indicator species which appearance/absence, dominance/weakness, and 

or tolerance are related to the environmental deterioration and perturbation. Several studies 

have been conducted, suggesting different indicator species in different regions (e.g. the 

marine angiosperm Posidonia oceanica is an endemic species for Mediterranean 

ecoregion), although some higher taxonomic groups (i.e. genus and family) may still retain 

indicator value and show consistent trends across more than one region (e.g. the genus 

Zostera is the most widely distributed marine angiosperm in the Northern Hemisphere). 

 

3.1.1. Pelagic species 

Anthropogenic nutrient increase and change to the N:P:Si ratios is reflected in the 

composition of the phytoplankton community, although, specific phytoplankton indicator 

species of eutrophication have not yet been found in coastal areas (Smayda, 2004). 

However, it is recognized that high phytoplankton biomasses (often associated with 

anthropogenic nutrient enrichment) large phytoplankton cells dominate and these are 

almost invariably dominated by a single phytoplankton species (Irigoien et al., 2004). The 

same authors concluded that on a global scale the dominant species at high phytoplankton 

biomass are generally a diatom, a dinoflagellate, a coccolithophorid (Emiliana huxleyii) or 

Phaeocystis sp.. 

In contrast to freshwaters, the indicative value of the Cyanobacterial communities is 

not evident in coastal areas and estuaries. Although, in some coastal areas and estuaries of 

low salinity such as those in the Eastern Gulf of Finland, Baltic Sea, the dominance of 

freshwater cyanobacteria species (e.g. Planktothrix agardhii, Microcystis spp), or the 

increasing frequency and intensity of late-summer cyanobacterial blooms in low-saline 

estuaries (e.g. Nodularia spumigena) (Kahru et al., 1994, Finni et al., 2001) indicate 

increased eutrophication status (Kauppila et al. 1995).  
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Phaeocystis blooms 

The marine prymnesiophyte Phaeocystis pouchetii forms recurrent blooms North Sea 

coasts. It lives in either flagellated form, or forms gelatinous colonies when under nitrogen 

limitation (Riegman, 1995). During mass occurrences in spring and early summer, 

Phaeocystis  produce foam that accumulates to the shoreline. Long-term monitoring has 

shown that the Phaeocystis blooms are connected to nutrient enrichment of the coastal area 

(Lancelot et al., 1987, Cadée and Hegeman, 2002). 

 

Blooms of haptophytes 

Blooms of haptophytes, especially Prymnesium parvum and Chrysochromulina 

polylepis have been reported around the world in brackish and marine waters, including 

European coasts (Edvardsen and Paasche 1998). These haptophyte flagellates form 

massive blooms and can cause fish kills or even extensive ecosystem disasters along the 

coastal areas. As an example, such a disastrous bloom of Chrysochromulina polylepis 

occurred on the Norwegian coast and Kattegat in 1988 (Dahl et al., 1989), and evidence 

suggests that this particular bloom was stimulated by anthropogenic nutrients (Aksnes et 

al., 1995). 

 

Cyanobacterial blooms 

In the Baltic Sea, filamentous cyanobacteria regularly form late summer blooms, 

dominated by Aphanizomenon flos-aquae, and Nodularia spumigena, which are both able 

to fix atmospheric nitrogen. N. spumigena blooms are frequently toxic (Sivonen et al., 

1989). These blooms initiate in areas where different water masses meet and where 

inorganic phosphate is introduced to the trophogenic layer from below the thermocline 

(Kononen et al., 1996), thus, giving the N-fixing cyanobacteria a competitive advantage in 

N-limited late-summer situation.  

 

Dinoflagellate and diatom blooms 

Most harmful algal blooms are caused by dinoflagellates. They may produce toxins 

causing paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), or 

compounds that cause mass mortalities of fish. The most regularly occurring taxons in 

European coastal waters, which are also listed as indicator species by the OSPAR 

Commission (OSPAR, 2003) are Gymnodinum mikimotoi, Alexandrium spp., Dinophysis 
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spp. and Prorocentrum spp. (table 1). In addition, species of the diatom genus Pseudo-

nitzschia can cause shelfish poisoning in European coastal areas (Moestrup, 2004).  
 

Table 1. The elevated “nuisance bloom” or toxic assessment levels and their type of effects for some 
phytoplankton indicator species (this list is not exhaustive). 
 

Indicator species Level/threshold Effect 

Nuisance species 
Phaeocystis spp. (colony 

form) 
> 106 cells/l (and 30 days duration) Nuisance, Foam, Oxygen 

Deficiency 
Noctiluca scintillans > 104 cells/l (area coverage > 5 km2) Nuisance, Oxygen Deficiency 
Toxic (toxin producing) species 
Chrysochromulina polylepis > 106 cells/l Toxic; Fish and Benthos Kills 
Gymnodinium mikimotoi  > 105 cells/l Toxic; Fish kills, PSP mussel 

infection 
Alexandrium spp.  > 102 cells/l Toxic; PSP mussel infection 
Dinophysis spp.  > 102 cells/l Toxic; DSP mussel infection 
Prorocentrum spp.  > 104 cells/l Toxic; DSP mussel infection 

 

Shifts in the phytoplankton composition 

It has been observed in long-term studies, that changes within the functional 

phytoplankton groups occur in the course of eutrophication and concomitant increase in 

total phytoplankton biomass. (Olenina, 1998) has reported shifts in both spring bloom 

diatom community as well as late summer cyanobacterial community towards "eutrophic" 

species in the Kuršiu Marios lagoon, the Baltic Sea. In her time series, Stephanodiscus 

hantzschii became dominant in the spring bloom, and Planktonema lauterbornii in the 

summer cyanobacterial assemblage. 

Tikkanen and Willen (1992) have identified the following phytoplankton indicator 

species for eutrophication in the Baltic Sea: 

- Actinastrum hantzschii Lagerheim 

- Pediastrum angulosum (Ehrenberg) Meneghini 

- Pediastrum duplex Meyen 

- Pediastrum tetras (Ehrenberg) Ralfs 

- Coelastrum microporum Nageli 

- Microcystis aeruginosa Kutzing 

OSPAR has also identified phytoplankton indicator species, setting as well 

abundance thresholds in the North-Eastern Atlantic. Region/area-specific phytoplankton 

eutrophication indicator species, such as nuisance species (Phaeocystis, Noctiluca) and 

potentially toxic (dinoflagellates) species (e.g. Chrysochromulina polylepis, Gymnodinium 
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mikimotoi, Alexandrium spp., Dinophysis spp., Prorocentrum spp.) should remain below 

respective nuisance and/or toxic levels (table 1, OSPAR Commission, 2003). 

Other authors (Hasle and Syvertsen, 1997; Libby et al., 2003) have set the same 

threshold for Alexandrium spp. (100 cell/l). Another non-toxic species whose blooms have 

caused anoxic events (at abundances approaching those) is Ceratium tripos. Potentially 

toxic species of the diatom genus is Pseudo-nitzschia. Pseudo-nitzschia 

pseudodelicatissima has been associated with domoic-acid toxicity in the sea (Hasle and 

Syvertsen, 1997). It is unclear whether abundances of P. pseudodelicatissima within the 

threshold levels should cause alarm, when these thresholds were originally established for 

what is identified with light microscopy as Pseudo-nitzschia “pungens”. This designation 

can include both non-toxic P. pungens as well as the identical-appearing (at least with light 

microscopy) domoic-acid producing species P. multiseries. Resolving the species 

identifications of these two species requires scanning electron microscopy. Libby et al., 

2003 have proposed indicator species and thresholds for Massachusetts waters (see table 

2). 
 

Table 2. Contingency plan threshold values for water column monitoring (Libby et al., 2003). 
 

Species Time Period Caution Level 

Winter/spring 2,020,000 cells l-1 
Summer 334 cells l-1 

Phaeocystis pouchetii 

Autumn 2,370 cells l-1 
Winter/spring 21,000 cells l-1 
Summer 38,000 cells l-1 

Pseudo-nitzschia pungens 

Autumn 24,600 cells l-1 
Alexandrium tamarense Any nearfield sample 100 cells l-1 

 

Among the zooplankton species, rotifers such as Asplanchna brightwelli, Brachionus 

angularis, Brachionus falcatus, Filinia terminalis, Euchlanis dilatata, Trichocerca spp., 

Acanthocyclops vernalis and Polyarthra remata are good indicators of eutrophic 

conditions. The rotifer genus Brachionus has proved to be a better indicator organism for 

these environmental gradients than the entire zooplankton assemblage. Hence, this taxon 

can be considered a target taxon for more intensive monitoring and conservation planning. 

The used method to assess the indicator properties of species assemblages and to select 

target taxa can be widely applied in any aquatic ecosystems to any group of organisms, 

spatial and temporal scales, and environmental gradients (Attayde and Bozelli, 1998). The 

high concentration of the cladocera species Penilia avirostris is an indicator of alterations 

in the food web components. P. avirostris has the capacity to quickly build dense 
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populations and significantly influence the food web structure and the fate of the primary 

production. It feeds mostly on nanoplankton (2-20 µm) (Turner et al., 1988) and thus plays 

a different role in the pelagic food web than the other marine cladocera species. Hence, 

P. avirostris is an important link between bacterioplankton and higher consumers because 

of its predation on bacterivorous flagellates. The uncertainties arise not only from the 

non-specific response to eutrophication, but also to climate changes. More, P. avirostris is 

an invasive species in the North Sea (Ærtebjerg et al., 2002). For its high frequency of 

distribution and density, the copepod Acartia clausi is also used as indicator for elevated 

eutrophication (Petran and Rusu, 1990). Eutrophication is believed to cause an increase in 

the relative importance of gelatinous zooplankton vs. crustacean zooplankton (main 

element of fish food spectrum). Thus density of jellyfish species could be used as a reliable 

indicator of eutrophication. Further, jellyfish blooms could be seen as a sign of ailing seas. 

Energy and organic matter that could otherwise be channeled into harvestable organisms is 

turned into non-utilizable jelly and gelatinous branch of the food web (Robinson and 

Connor, 1999). Because of the strong year-to-year fluctuations of the gelatinous plankton, 

individual years may be identified as “poor”, “normal” or “rich” (Buecher, 2001). For each 

of the European Seas typical specific species, but also common gelatinous, regularly bloom 

(equal to “rich” year, based on the long-term variability assessment) and thus could be 

used as a indicator. 

 

3.1.2. Benthic species 

Benthic macroinvertebrates are long-term indicators of environmental quality; they 

integrate water, sediment, and habitat qualities (USEPA, 1990). The presence/absence of 

several sensitive benthic species is used in all European Seas as an indicator for 

hypoxia/anoxia.  

The other Ecological Quality Objective (EcoQO) identified for the benthic 

community, the presence of imposex in the dog whelk, Nucella lapillus, is an indicator of 

the effects and persistence of organotin compounds on benthic organisms, and is supported 

by sample data from coastal waters in several European countries (Gibbs et al., 1987; 

Stroben et al., 1995). 

 Examples of indices based on diversity values of benthic species for marine coastal 

and transitional waters are: 

• AZTI marine biotic index (AMBI, Borja et al., 2000a); 

• BENTIX index (Simboura and Zenetos, 2002). 
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The AMBI, or, in short, the BI, was designed to establish the ecological quality of 

European coasts, investigating the response of soft-bottom communities to changes in 

water quality. It allows classifying a particular site, representing the health of the benthic 

community (sensu Grall and Glemarec, 1997). The theoretical basis of the BI is that of the 

ecological strategies of the r, k and T (Pianka, 1970) and the progressive steps in 

environments stressed, for example, by organic enrichment (Bellan, 1967; Pearson and 

Rosenberg, 1978). Most of the concepts developed within the AMBI are based upon 

previous proposals: the species should be i) classified into five ecological groups (EG) 

(Glemarec and Hily, 1981; Grall and Glemarec, 1997); and ii) index values range from 0 to 

7 (Hily, 1984; Majeed, 1987); in brief, the ecological theory of the BI is based upon 

sensitivity/tolerance to pollution (disturbance, such as drill cutting discharges, submarine 

outfalls, harbour and dyke construction, heavy metal inputs, eutrophication processes, 

diffuse pollutant inputs, recovery in polluted systems under the impact of sewerage 

schemes, dredging processes, mud disposal, sand extraction and oil spills). Five EG can be 

established: 

EG I: Species very sensitive; 

EG II: Species indifferent; 

EG III: Species tolerant; 

EG IV: Second order opportunistic species; 

EG V: First order opportunistic species. 

BI is calculated as follows: 

BI = [(0 × %EGI) + (1.5 × %EGII) + (3 × %EGIII) + 

(4.5 × %EGIV) + (6 × %EGV)] / 100. 

The formulation of the index allow for continuous values, with several thresholds in 

the scale, based upon the proportions amongst the five EG (figure 1). Some of the 

differences in this BI, in relation to those adopted previously, are based upon the use of a 

formula to obtain a continuous value of an index, called the Biotic Coefficient (BC). This 

is referenced to a BI, representing the quality of the bottom conditions in a discreet range 

from 0 (unpolluted) to 7 (extremely polluted). Although this index was based on the 

paradigm of Pearson and Rosenberg (1978), which emphasises the influence of organic 

matter enrichment on benthic communities, it was shown to be useful for the assessment of 

other anthropogenic impacts, such as physical alterations in the habitat, heavy metal inputs, 

etc. (Borja et al., 2000a). On the other side, it would be possible to extend the use of the 

BC to all European coastal areas, under the condition that new species be assigned to the 
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EC already designated.  A program for calculation of both BI and BC are available free of 

charge at www.azti.es/ingles, along with a continuously updated list of species and their 

corresponding EG, currently encompassing over 2700 taxa. 

 

 
Figure 1. Classification of soft bottom macrofauna species into five ecological groups (I: very sensitive 

species; II: indifferent species; III: tolerant species; IV: second-order opportunistic species; 
V: first-order opportunistic species), according to their sensitivity to increasing pollution 
gradients (Borja et al., 2000a). The relative proportion of abundance of each group in a 
sample produces a discreet Biotic Index with 8 levels (0-7) and an equivalent continuous 
Biotic Coefficient (0-6). 

 

The index examined the response of soft-bottom benthic communities to natural and 

man-induced disturbances in coastal and estuarine environments. It has been successfully 

applied to different geographical areas and under different impact sources, with increasing 

user numbers in European marine waters (Baltic, North Sea, Atlantic, Norwegian Sea and 

Mediterranean, all in Europe, but also in Hong Kong, Uruguay and Brazil). The AMBI has 

been used also for the determination of the ecological quality status (EcoQ) within the 

context of the European Water Framework Directive (WFD). In this contribution, 38 

different applications including six new case studies (hypoxia processes, sand extraction, 

oil platform impacts, engineering works, dredging and fish aquaculture) are presented (see 

table 3). 

The results show the response of the benthic communities to different disturbance 

sources in a simple way. Those communities act as ecological indicators of the ‘health’ of 

the system, indicating clearly the gradient associated with the disturbance. 

Although the AMBI is particularly useful in detecting time and spatial impact 

gradient, its robustness could be reduced when only a very low number of taxa (1 to 3) 

and/or individuals are found in a sample. The same could occur when studying low-salinity 

locations (e.g. the very inner part of the estuaries), naturally-stressed locations (e.g. 
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naturally organic matter enriched bottoms), or some particular impacts (e.g. sand 

extraction, some locations under dredged sediment dumping, or physical impact). For 

problems associated with the use of AMBI, see Borja et al. (2004), and the protocol for the 

use of AMBI contained in the free-ware software for its calculation (www.azti.es). In the 

above mentioned particular cases Borja et al. (2004) recommend the use of AMBI, 

together with other metrics, in order to obtain a more comprehensive view of the benthic 

community, being also recommended a more detailed analysis and discussion of the 

results. 

 
Table 3. Different impact sources and geographical areas for which AMBI has been applied in recent 

years. Key: p.c. = personal communication. 
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Occhipinti et al. (2005) tested different approaches for Quality Assessment using the 

Benthic Community in the Northern Adriatic Sea, in Italy. The two biotic indices applied 

on these data were: the AMBI index by Borja et al. (2000a) and the BENTIX index by 

Simboura and Zenetos (2002). The contrasting quality levels which emerge from the two 

indices appear mainly due to the different assignment of the species to the ecological 

groups, but also to the different number and weight of the ecological groups in the formula 

calculation. In all our stations, AMBI correlates better than BENTIX both with the 

community structure and the chemical-physical parameters and seems more appropriate in 

describing the variations observed in our environment. 

The BENTIX Index is a newly developed tool, based on macrozoobenthos of soft 

substrata, aiding the assessment of ecological quality status conforming to the requirements 

of the WFD. The zoobenthic species are classified into three EGs and assigned a score 

from 1 to 3 according to their response to organic pollution (i.e., the tolerance of various 

levels of dissolved oxygen):  

EGI: includes species sensitive to disturbance in general; 

EGII: includes species tolerant to disturbance or stress, whose populations may 

respond to enrichment or other source of pollution by an increase of densities (slightly 

unbalanced situations); 

EGIII: includes first order opportunistic species (strongly unbalanced situations), 

pioneers, colonizers, and species tolerant to hypoxia. 

BI is regionally specific. Potential benthic macroinvertebrates metrics are number of 

taxa (reducing under stress), % contribution of dominant taxon (elevated under stress). 

Following calculations, validation and testing with data from Hellenic ecosystems, an 

algorithm was developed giving different weight to the presence/abundance of each group: 

BENTIX = [(6 × % EGI) + 2 × (% EGII + % EGIII)]/100 

A classification system (table 4) appears as a function of BENTIX including five levels of 

ecological quality status (EQS) in accordance with the needs of the WFD. 

 
Table 4. Classification of EcoQ according to range of the Biotic Index (Simboura and Zenetos, 2002). 
 

Pollution 
Classification 

Bentix EQ
S WFD 

Bentix in physically stressed 
muds 

Normal/Pristine 4,5 < 
Bentix < 6 

Hig
h 

4 < Bentix < 6  

Slightly polluted, 
transitional 

3,5 < 
Bentix < 4,5 

Go
od 

3,0 < Bentix < 4,00 

Moderately polluted 2,5 < 
Bentix < 3,5 

Mo
derate 

2,5 < Bentix < 3,00 

Heavily polluted 2 < Bentix 
< 2,5 

Poo
r 

 

Azoic Azoic Bad  
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Use of the BENTIX can produce a series of continuous values from 2 to 6, being 0 

when the sediment is azoic (all groups zero). Numeric values between 2 and zero are 

nonexistent in the scale because if EG1 is zero the BENTIX index is 2. A classification 

system of soft bottom macrozoobenthic communities is proposed based on the BENTIX 

index and including five levels of ecological quality. The boundaries between classes were 

set keeping equal distances among classes limited only by the two extremes of the scale (2-

6) and were tested using data from various sites with known environmental pressures. The 

BENTIX index applies to all kind of marine soft bottom benthic data. 

The BENTIX index has been applied in: 

• In Saronikos Gulf, receiving the sewage effluents of the Metropolitan city of 

Athens a Primary Treatment Plant started working in 1994. The benthic 

communities’ ecological quality status is followed the years 1999 to 2004. As 

shown by Simboura and Zenetos (2002) the EQS is improving with the distance 

from the sewage outfall. A reference “high” quality status zone is limited in the 

more coastal areas. 

• In E-SE Attiki characterized by touristic development of the coastal zone, 

disturbance is attributed primarily to organic pollution (wastes of coastal villages, 

ports etc). The offshore areas of E. Attiki (Petalioi Gulf) are important fishing 

grounds for bottom trawlers. The EQS of the E, SE coasts of Attiki appears to be 

good to high.   

• In Izmir Bay, mean values of the BENTIX is increasing from the inner towards the 

outer bay and so is EQS (figure 2). The poor quality of the inner Bay, which is 

subject to a combination of pollution sources, is reflected in all parameters (figure 

2).  

 

 
 
Figure 2. Mean values of BENTIX and H' along a pollution gradient in Izmir Bay. Colours 

correspond to EQS classes as defined in the WFD (Source: Dogan, 2004). 
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• Edremit Bay is one of the most important fishery regions of the Turkish Aegean 

Sea. However, the innermost region of the Bay is partly affected by increasing 

human settlements (tourist resorts) and this is reflected in species richness of the 

zoobenthos (Albayrak, pers. com.). The EQS according to BENTIX appears to be 

moderate to high.  

• In Augusta Bay, qualitative and quantitative studies based on polychaetes and 

mollusks confirmed a degradation of the ecosystem between 1983 and 1985 (Di 

Geronimo, 1990). BENTIX revealed a degradation of the shallower coastal sites 

(closer to LBS) and an improvement of the deeper stations. 

• In Portman Bay (Spain) the main stressor is dumping coarse metalliferous waste. 

The assessments derived by the BENTIX did not match at all. According to Marín-

Guirao et al. (2005) the indicator species lists proposed by Simboura and Zenetos 

(2002) are based on organic pollution literature and therefore, its application in the 

case of purely toxic pollution was not successful. 

• In Iskenderun Bay, where the main stressor is a pipe line and a power plant, 

BENTIX produced similar results with Shannon-Wiener index in 60 % of the cases. 

• In Banias, a very impacted area along the Syrian coasts, results obtained by 

BENTIX was inconclusive. With the exception of the most polluted station (site of 

sewage treatment plant) the assessment was always contradictory: polluted status 

according to H', high status according to BENTIX. This may be explained by two 

reasons: a) sampling was semi quantitative (dredges) and b) most important the 

fauna was very poor and inadequately identified to species level.  

Conclusively, BENTIX appears to work successfully (different ecological quality 

classes corresponding to different stress) mostly in the eastern Mediterranean provided that 

a certain taxonomic effort is exerted (specimens assigned mostly to species level). Results 

were independent of mesh size used, but were misleading when based on semi qualitative 

data from dredges. In any case, EQS assessments should be based on a combination of 

indices as the results may be misleading according to case (i.e. heavy metal pollution). 

Moreover, further development of this type of environmental tool requires the consensus of 

scientists in the assignation of species to a particular ecological group. The Geographical 

Intercalibration Groups (GIGs) for Mediterranean Member States has provided an update 

on the intercalibration exercise including the BENTIX index as tool index to test. 
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3.1.3. Pelagic and benthic invading species 

Species invasions are irreversible events, shifting the ecosystem from one to another 

state. Towards that point, the presence or absence of invasive species and their number are 

indicators for a threshold of non-returning point. The concentration of invaders must be 

monitored, and the range of their variability and dispersal could be used for prognoses and 

management scenarios for future invasions (Gollasch and Leppakoski, 1999; Moncheva 

and Kamburska, 2002). The world shipping fleet is transporting approximately 10 bill.t. of 

ballast water around the globe/year - on average more than 3000 species of plants and 

animals transferred daily around the world. It was estimated that every 28 weeks there was 

a new record of nonindigenous species in Baltic Sea (Gollasch and Leppakoski, 1999) and 

every 44 weeks in the Black Sea (Kamburska and Moncheva, 2003). The invader species 

may behave as a “biological time-bomb” either by promoting the colonization of other 

aliens, or unforeseen direct and indirect ecological and socio-economic impacts. 

 
Table 5. Summary for level 1 indicators. 
 

Indicator/ Index     

Easiness to measure     

Sensitiveness to pressure     

Predictable response     

Anticipatory     

Predict changes due to 
management actions 

    

Integrative     

Known response to disturbances 
, pressures and changes over time 

    

Low variability     

 

3.2. Ratio between classes of organisms 

Level 2 indicators use ratios between classes of organisms. A characteristic example 

of such a biological indicator of water quality is the Nyggard index (Nygaard, 1949), it is a 

ratio between algal groups that was developed for freshwater systems. Although the 

concept of plankton quotients was severely criticized, the opinion still holds that desmids 

are generally encountered in nutrient-poor water bodies (Hutchinson 1967, Reynolds 

1984). However, Coesel (1975, 1983) pointed out that not all desmid species follow that 

trend in distribution, so that the indicative significance can better be considered at the 

species level. Nygaard’s Phytoplankton classification for freshwaters is showed in table 6. 
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Table 6. Nygaard’s algal index 
 

Index Calculation Oligotrophic Eut
rophic 

Myxophycean Myxophyceae/ Desmids 0.0 to 0.4 0.1 
to 0.3 

Chlorophycean Chlorococcales/Desmids 0.0 to 0.7 0.2 
to 9.0 

Bacillariophycean Centric/Pinnate Diatoms 0.0 to 0.3 0.0 
to 1.7 

Euglenophycean Euglenophyta/ 
Myxophyceae+Chlorococcale
s 

0.0 to 0.2 0.0 
to 1.0 

Compound Quotient 
 

Myxophycean 
+Chlorococcales+Centric+Eu
glenophyceae 
 
Desmids 

0.01 to 1.0 1.2 
to 2.5 

 

Recently, the Ecological Evaluation Index (EEI) has been proposed by Orfanidis et 

al. (2001). The EEI is a number ranging from 2 to 10, indicating the ecological quality 

status of transitional and coastal waters in five classes, from high to bad. Marine benthic 

macrophytes (seaweeds, seagrasses) are used as bio-indicators of ecosystem shifts, from 

the pristine state with late-successional species (Ecological State Group I, ESG I) to the 

degraded state with opportunistic species (Ecological State Group II, ESG II). The first 

group comprises genera with a thick or calcareous thallus, low growth rates and long life 

cycles (perennials) whereas the second group includes filamentous genera with high 

growth rates and short life cycles (annuals). Seagrasses were included in the first group, 

whereas Cyanophyceae and species with a coarsely branched thallus were included in the 

second group. The EEI quantifies shifts in the structure and function of transitional and 

coastal waters at different spatial and temporal scales by using non-linear and linear 

relationships. The evaluation of ecological status into five categories from high to bad 

includes a comparison of the percentual abundance of ESG I species against ESG II 

species to which a numerical scoring system is matched (see figure 3 and table 7). The 

Geographical Intercalibration Groups (GIGs) for Mediterranean Member States has 

provided an update on the intercalibration exercise including the EEI index as tool index to 

test. 
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Figure 3. Ecological State Group classification matrix for seaweed and seagrasses. The matrix scores 

the mean abundance (%) of ESGs to determine the ecological status of transitional and 
coastal waters (Orfanidis et al., 2001). 

 
Table 7. Estimation of EEI and the equivalent ESCs from the abundance of ESGs. 

 
 

Diatoms/flagellates – shift of functional groups 

Changes in ambient nutrient concentrations and their ratios give competitive 

advantage to some phytoplankton species over the others (Officer and Ryther, 1980, Egge 

and Aksnes, 1992). Silicate limitation, indicated by decreasing Si: N ratios as a 

consequence of eutrophication affects the phytoplankton community, potentially by 

decreasing the relative biomass of diatoms and increasing in the biomass of flagellates, 

some of which may develop harmful algal blooms (Sommer, 1995, Escaravage et al. 

1999). It has been observed in the North Sea coastal area, that long-term eutrophication has 

not only led to increase in phytoplankton biomass (chlorophyll-a), but also changes in the 

phytoplankton community structure towards large algae in the diatom assemblage, and 
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Phaeocystis pouchetii (Haptophyta) -dominated blooms (Philippart et al., 2000, Cadée and 

Hegeman 2002). A similar trend has been found from the southern Baltic Sea (Wasmund 

and Uhlig, 2003), where long-term monitoring data showed decline of diatoms and 

increase in dinoflagellates during the spring bloom.  

 

Proportion of cyanobacteria 

However, in low salinity environments, the relative proportion of cyanobacteria of 

total phytoplankton biomass can be used as a potential indicator of eutrophication.  

 

Proportion of picoplankton  

In oligotrophic conditions when ambient nutrient concentrations are low, the fraction 

of small-sized phytoplankton (picoplankton: <2 µm-size) algae, that are ubiquitous in 

aquatic systems often exceeds 50 % of phytoplankton. The share of picoplankton decreases 

with increasing nutrient concentration both in experimental and natural conditions 

(Stockner,1988, Kuosa,1990, Thingstad et al., 1998, Agawin et al., 2000, Gotsis-Skretas et 

al,. 2000), and in hypereutrophic environments their proportion of autotrophic biomass is 

only a few per cent.  

Picoplanktonic algae are, however, overlooked in monitoring programmes even if 

their contribution to the biomass would be easy to estimate, by measuring the share of <2-3 

µm chlorophyll-a fraction and comparing it to the total chlorophyll. Their biomass is also 

easy to estimate microscopically (McIsaac and Stockner 1993), which could be used in 

monitoring. 

For what concerns marine coastal and transitional waters, a Joint BSRP/HELCOM 

(Baltic Sea Regional Project and Helsinki Commission) Coastal Fish Monitoring 

Workshop 2/2005 proposed a list of indicators for coastal fish community health. Of these, 

a number of this were ratios such as Cyprinid/Percid ratio (in particular Minnow fish/Perch 

fish, HELCOM 2003), Benthic/Pelagic species ratio for the Eutrophication assessment 

scheme in the Baltic Sea drafted by the HELCOM EcoQO project. The Danish National 

Environmental Research Institute (NERI) used a similar scheme in producing their 2003 

assessment of the eutrophication status of Danish marine waters (Aerteberg et al. 2003).  

Coastal fish stocks change due to the multitude of interlinked ecosystem changes 

connected with eutrophication. Cyprinids seem to be favored by the increasing 

eutrophication and the ratio between functional groups cyprinid and percid abundances 

seem to have some promise as a indicator of eutrophication (Appelberg and Ådjers, 2001). 
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3.3. Specific chemical compounds and biomarkers 

3.3.1. Specific chemical compounds 

Among the most anthropogenically altered water chemistry variables are the 

nutrients, i.e. nitrogen (N) and phosphorus (P). These have since the 1960’s been 

associated to degradation of ecosystems, to the process called eutrophication, first 

recognised in freshwater and most recently in coastal water (Nixon, 1995). Thus, there are 

some decades worth history of measuring and using these elements as indicators of 

eutrophication. When considering eutrophication in coastal areas, equally relevant as 

ambient concentrations N, P and silicate (Si), are their ratios. As nitrate concentrations 

increase due to anthropogenic loading, systems are moving towards not only higher N: P 

ratios, but also lower Si:N ratios. Also, other human activities, such as damming of rivers, 

leads to increasing silicate retention and smaller silicon load to the seas (Humborg et al. 

2000). During the last decades, N: P ratios have increased dramatically in Dutch coastal 

waters (deJonge et al. 2002), Danish coastal areas (Jorgensen 1996, Kaas et al. 1996), and 

the Black Sea (Shtereva et al. 1999).  

The OSPAR checklist of parameters for a holistic assessment includes under the 

causative factors the degree of nutrient enrichment and lists a number of related indicators 

see table below) that need to be considered when evaluating a marine area for its degree of 

eutrophication. Also, Ospar has agreed to some qualitative/quantitative criteria for these 

indicators (see tables 8 and 9). 

 

Table 8. Extract from the Common Procedure for the Identification of the Eutrophication Status of 
the Maritime Area of the OSPAR Convention – OSPAR 1997 Summary Record - 
OSPAR 97/15/1. 

 
a. the causative factors 

 the degree of nutrient enrichment 
• with regard to inorganic/organic nitrogen 
• with regard to inorganic/organic phosphorus 
• with regard to silicon 

taking account of: 
• sources (differentiating between anthropogenic and natural sources) 
• increased/upward trends in concentration 
• elevated concentrations 
• increased N/P, N/Si, P/Si ratios 
• fluxes and nutrient cycles (including across boundary fluxes, recycling within environmental compartments and 
riverine, direct and atmospheric inputs) 
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Table 9.The agreed Harmonised Assessment Criteria and their respective assessment levels of the 
Comprehensive Procedure (OSPAR, 2001). 
 
Assessment parameters 

Category I Degree of Nutrient Enrichment  
 1 Riverine total N and total P inputs and direct discharges (RID) 

  Elevated inputs and/or increased trends  

  (compared with previous years) 

 2 Winter DIN- and/or DIP concentrations 

  Elevated level(s) (defined as concentration >50 % above salinity related and/or region specific 
background concentration) 

 3 Increased winter N/P ratio (Redfield N/P = 16)  

  Elevated cf. Redfield (>25) 

 

3.3.2. Biomarkers 

Biomarkers have also been used as indicators of ecosystem health. A biomarker is 

defined as a change in a biological response (ranging from molecular through cellular and 

physiological responses to behavioral changes) which can be related to exposure to, or 

toxic effects of, environmental chemicals (Peakall, 1994).  

The ability of various pollutants to mutually affect their toxic actions complicates the 

risk assessment based solely on environmental levels. Deleterious effects on populations 

are often difficult to detect in feral organisms since many of these effects tend to manifest 

only after longer periods of time. When the effect finally becomes clear, the destructive 

process may have gone beyond the point where it can be reversed by remedial actions or 

risk reduction. Effects at higher hierarchical levels are always preceded by earlier changes 

in biological processes, allowing the development of early-warning biomarker signals of 

effects at later response levels (Bayne et al., 1985). In an environmental context, 

biomarkers offer promise as sensitive indicators demonstrating that toxicants have entered 

organisms, have been distributed between tissues, and are eliciting a toxic effect at critical 

targets (McCarthy and Shugart, 1990).  

The sequential order of responses to pollutant stress within a biological system is 

visualized in figure 4. 
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Figure 4. Schematic representation of the sequential order of response to pollutant stress within a 

biological system. Modified from Bayne et al. (1985). 
 

The most compelling reason for using biomarkers is that they can give information 

on the biological effects of pollutants rather than a mere quantification of their 

environmental levels. Biomarkers may provide insight into the potential mechanisms of 

contaminant effects. By screening multiple biomarker responses, important information 

will be obtained about organism toxicant exposure and stress. A pollutant stress situation 

normally triggers a cascade of biological responses, each of which may, in theory, serve as 

a biomarker (McCarthy et al., 1991). Above a certain threshold (in pollutant dose or 

exposure time) the pollutant-responsive biomarker signals deviate from the normal range 

in an unstressed situation, finally leading to the manifestation of a multiple effect situation 

at higher hierarchical levels of biological organization (see figure 5). 

 

 
Figure 5. The principal scheme of response in organisms to the detrimental effects of pollutant 

exposure. Modified from McCarthy et al. (1991). 
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According to the NRC (1987) and WHO (1993), biomarkers can be subdivided into 

three classes: 

- biomarkers of exposure: covering the detection and measurement of an exogenous 

substance or its metabolite or the product of an interaction between a xenobiotic agent 

and some target molecule or cell that is measured in a compartment within an 

organism; 

- biomarkers of effect: including measurable biochemical, physiological or other 

alterations within tissues or body fluids of an organism that can be recognized as 

associated with an established or possible health impairment or disease; 

- biomarkers of susceptibility: indicating the inherent or acquired ability of an 

organism to respond to the challenge of exposure to a specific xenobiotic substance, 

including genetic factors and changes in receptors which alter the susceptibility of an 

organism to that exposure. 

However, most of the biomarkers that have been studied in the field are related to the two 

first categories. The biomarkers, presented below, where chosen for specificity, for 

robustness and because they are among a limited set a methods proposed by international 

organizations, including OSPAR and ICES. 

 

3.3.2.1 Biomarkers of exposure 

They are not indicative of biological effects but provide sensitive markers of 

exposure to bioavailable levels of pollutants in the environment. 

 

Mercury in seagrass 

One example for Mediterranean marine coastal waters is the use of the seagrass 

Posidonia oceanica as a biological indicator of past and present status of contamination. 

The capability of Posidonia oceanica to concentrate a range of pollutants, such as the 

organochlorine compounds DDT, lindane and PCB (Chabert et al., 1984), certain artificial 

radionuclides (Florou et al., 1985; Calmet et al., 1988, 1991), and trace metals (Augier et 

al., 1977; Chabert et al., 1983; Maserti et al., 1988; Malea and Haritonidis, 1989; Gnassia-

Barelli et al., 1991) has been clearly established. In a study conduced by Pergent-Martini 

(1998), the concentration of mercury was measured in various tissues of Posidonia 

oceanica at three sites presenting distinct degrees of human activity. The accumulation of 

mercury differed according to the tissue examined and the level of contamination of the 

site. The use of lepidochronology, a technique for dating the dead sheaths and rhizomes of 
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Posidonia oceanica, rendered it possible not only to determine the present level of 

contamination at each site, but also to reconstitute the pattern of change in the degree of 

contamination of the environment over a period of twenty years.  

The bioaccumulation of mercury by the phanerogam is considerable, the 

concentration factor being estimated for Marseilles-Cortiou at 3200 (the ratio between the 

mean mercury concentration in the water and that of the living leaves on a wet weight 

basis, as reported by Joanny et al., 1993). This accumulation shows wide variations 

according to the tissue examined and the degree of human activity at the site. Where 

mercury contamination is low, accumulation occurs preferentially in the rhizomes, whereas 

in sites subjected to greater contamination, mercury accumulation is highest in the blades. 

The concentrations of mercury accumulated in sheaths of Posidonia oceanica, are retained 

in the plant for long periods of time (Calmet et al., 1988; Pergent-Martini et al., 1992; 

Pergent-Martini and Pergent, 1995; Pergent-Martini, 1998). Because of this property, it is 

possible (using only occasional sampling) to determine the patterns of change over time of 

the mean mercury contamination of the environment. 

 

PAHs metabolites in fish 

PAH metabolites are sensitive markers of exposure to bioavailable levels of PAHs in 

the environment. Metabolite levels in bile can be determined either by analyzing the total 

level of PAH metabolites as fluorescent aromatic compounds (FAC), or by selecting a 

single metabolite as a marker for total PAH metabolism. Hydroxypyrene (OH pyrene) has 

been selected for this purpose because, first of all, relatively high levels of pyrene have 

been detected in most sediments; secondly, pyrene is biotransformed predominantly into a 

single, strongly fluorescent metabolite (OH pyrene); and thirdly, the bioavailability of 

pyrene is relatively high for aquatic organisms (Ariese et al., 1993). 

Van der Oost et al. (2003) summarized in their review the FAC responses for all fish 

species from 15 laboratory studies and 24 field studies. A significant increase in biliary 

FAC levels was observed in 93% of the laboratory studies and 79% of the field studies, 

while strong increases (>500% of control) were observed in 87% and 46% of the laboratory 

and field studies, respectively. They concluded that levels of biliary PAH metabolites are 

certainly sensitive biomarkers to assess recent exposure to PAHs. Since PAH exposure 

cannot be reliably determined by measuring fish tissue levels, this parameter was validated 

for ERA (Environmental Risk Assessment) processes concerning PAH-contaminated sites. 
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In 2002 the working Group on Biological Effects of Contaminants (WGBEC) 

recommended different techniques for biological monitoring programs (JØrgensen et al, 

2000). The PAH bile metabolites measured in fish assessed the exposure to and the 

metabolism of PAHs. They proposed a threshold value equal at 2 times the value at the 

reference site. 

Among the 2003 strategies of the OSPAR Commission, the biological effects 

methods of the Norwegian JAMP program (Green et al, 2003) included the measurement 

of the OH-pyrene in cod (Gadus morhua) bile. For the 2003 investigations, 25 cods were 

sampled at four stations: the inner Oslofjord (30B), Sorfjord (53B) and Sotra-Bomlo (23B) 

and in the open coastal area outside Lista (15B). The data’s showed that no significant 

temporal trends were found at these stations. The median concentration of OH-pyrene in 

cod from station 30B was higher than in cod from 15B, 53B and the “reference” station 

23B. However, the variability (SD) was higher than the respective medians at stations 15B 

and 53B. This indicated that some individuals at these two stations had been exposed to 

PAHs. When considering the whole period (1998-2003), the yearly median concentration at 

30B were the highest or next highest compared to the other 3 stations. Furthermore 

concentrations at 53B were usually higher than 23B. This presumably reflects the general 

contamination of the two areas (30B and 53B). The location 15B, previously regarded as 

only diffusely polluted, has an input of PAH which is sufficient to markedly affect fish in 

the area. The authors suggested to include DNA adduct analyses to clarify whether the 

cellular repair system of cod is sufficient to protect against damage from PAH radicals. 

During the BEEP project (Biological Effects of Environmental Pollution in Marine 

Coastal Ecosystems), Beliaeff and Bocquene (2004) analyzed the data’s generated from 11 

laboratories who sample twice a year (2001 and 2002) four sites (France, Italy, Spain and 

Greece). Fish (Mullus barbatus) and mussel (Mytilus galloprovincialis) were collected and 

among other biomarkers EROD activity and PAHs metabolites in bile were measured. Few 

chemical data were available but 16 PAHs recommended as priority pollutants and seven 

PCBs (28, 52, 101, 118, 138, 153 and 180) were measured in sediments during one of the 

cruise. The statistical analysis of the data shows a low efficiency and/or relevance of the 

selected biomarkers to predict chemical contamination in marine water. The different 

explanations they proposed are: the influence of confusing parameters (seasons, maturity 

sex, etc.), the differences in analysis procedure and the inadequate sampling designs. 

Note: Generally, the levels of bile metabolites are indicative of short-term exposure 

(1 week), and therefore, provide information on recent exposure only. It was demonstrated 
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that the PAHs bioavailability can vary markedly in different fish species living in 

environments similarly contaminated with PAHs.  

 

3.3.2.2 Biomarkers of effect 

Biomarkers of effect responses not only indicate chemical exposure, but also predict 

effects at various levels of biological organization. Their induction are biochemical 

changes within the organism which often precedes the onset of more serious cellular and 

physiological changes such as hepatic damage, reproductive toxicity, immunotoxicity etc.  

 

CYP1A responses and EROD activity 

Cytochromes P450 is a group of proteins that play a central role in the metabolism of 

endogenous substrates such as steroid hormones and xenobiotic compounds. CYP 1A 

(cytochrome P450 1A) are unique in that markedly increased levels as well as variant 

forms are commonly found in the tissue of animals exposed to different types of inducing 

compounds. Inducers of environmental importance include PAHs, PCBs and dioxins which 

effect induction via a cytosolic protein (the so-called Ah receptor). Next to CYP1A protein, 

a common method to examine the responses of the cytochromes P450 enzymes is to 

determine its catalytic activity. EROD (ethoxyresorufin O-deethylase) enzyme activity 

reflects the presence of induced cytochrome P450 1A.  

According to the OSPAR Commission (JAMP Guidelines for Contaminant-specific 

Biological Effects Monitoring), the EROD catalytic enzyme assay is the technique 

recommended for monitoring CYP 1A activity. Immunoassays for CYP 1A may also be 

used and may give additional information in cases where contaminant exposure is 

sufficient to cause inhibition of catalytic activity of CYP 1A. Certain confounding 

variables, which may affect the enzyme activities, however, will have to be considered 

when interpreting the responses in these parameters. 

Van der Oost et al. (2003) summarized in their review the CYP1A and EROD 

responses for all fish species. A significant increase in CYP1A levels was observed in 91% 

of the laboratory studies (n=60) and 85% of the field studies (n=48), while strong increases 

(>500% of control) were observed in 43 and 39% of the laboratory and field studies, 

respectively. A significant increase in EROD activities was observed in 88% of the 

laboratory studies (n=137) and 90% of the field studies (n=127), while strong increases 

(>500% of control) were observed in 69 and 37% of the laboratory and field studies, 

respectively. 
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In all fish species considered, hepatic CYP1A protein levels together with EROD 

activities levels may be used both for the assessment of exposure and as early-warning sign 

for potentially harmful effects of many organic trace pollutants. They are very sensitive 

biomarkers of exposure to PAHs and PCBs. Levine and Oris (1999) suggested that CYP1A 

expression due to exposure to rapidly metabolized substances should preferably be 

measured in tissues that make direct contact with the environment, such as the gill and 

intestine. The CYP1A response has been validated for use in ERA (Environmental Risk 

Assessment) monitoring programs (Bucheli and Fent, 1995), assuming that all potential 

variables that may affect this parameter are considered in the experimental design. 

The scientific Seine-Aval program assesses the usefulness of monitoring programs using a 

suite of biological measurements in the Seine Bay (Burgeot, 1999). Among the biomarker 

measured the EROD activity is determined  in European flounder fish (Platichthys flesus 

L.) and the results are integrated with AChE activity and DNA adducts results to define a 

biomarker indicator (Beliaeff and Burgeot, 1999). The biomarker indicator allows to 

characterize early stress regulation in flounder juvenile according to the contamination of 

the site by the PAHs and the PCBs. 

 
Table 10. Results of chemical and biological measurements in flounder from the Seine Bay. 
 

Sites PAHs  

ng/g sediment 

PCBs 

 ng/g sediment 

PAHs liver 

ng/g DW 

PCBs liver 

 ng/g DW 

Biomaker 

 indicator 

La Bouille 7140 ND 371 4120 6.33 

Caudebec 1450 ND 217 2734 3.04 

Honfleur 2500 ND 166 1902 0.32 

Embouchure 950 30 78 5633 1.63 

 

The working Group on Biological Effects of Contaminants (WGBEC) in 2002 

recommended different techniques for biological monitoring programs (JØrgensen et al, 

2000). The EROD activity and the CYP1A protein levels measured planar organic 

contaminants metabolism in mussel and fish. They proposed a threshold value equal at 2.5 

times the value at the reference site. 

Among the 2003 strategies of the OSPAR Commission, the biological effects 

methods of the Norwegian JAMP program (Green et al, 2003) included the measurement 

of the CYP1A protein level and EROD activity in Cod (Gadus morhua) liver. For the 2003 

investigations, 25 Cods were sampled at three stations: the inner Oslofjord (30B), Sorfjord 

(53B) and Sotra-Bomlo (23B). The data’s showed that no significant temporal trends were 

found at these three stations. The EROD activities correlated significantly with amount of 
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CYP1A protein (R2=0.53, p<0.0001). It has been shown that generally higher activity has 

been found at the most contaminated stations (Ruus et al, 2003). However, median EROD 

activity at station 53B was lower than at the less contaminated 23B station. At all stations, 

median EROD activities were lower in 2003 than in 2002. The two extreme PCB 

concentration fish had moderate hepatic EROD activities. The authors consider that 

confounding factors or adaptation to continuous exposure led to inconsistent responses for 

those biomarkers. 

During the BEEP project (Biological Effects of Environmental Pollution in Marine 

Coastal Ecosystems), Beliaeff and Bocquene (2004) analyzed the data’s generated from 11 

laboratories who sample twice a year (2001 and 2002) four sites (France, Italy, Spain and 

Greece). Fish (Mullus barbatus) and mussel (Mytilus galloprovincialis) were collected and 

among other biomarkers EROD activity and PAHs metabolites in bile were measured. 

Results are presented in the PAHs metabolites in fish paragraph above. 

 

DNA adducts 

OSPAR commission recommended a combination of three biomarker techniques to 

describe the impact of PAH compounds on biota at the biochemical level. The biomarker 

techniques selected are CYP 1A activity, bulky aromatic-DNA adducts and PAH 

metabolites in bile. These indicators can be considered as an interconnecting series since 

planar PAHs are effective in inducing CYP 1A enzyme and some of their members are 

metabolized to reactive epoxides forming DNA and protein adducts which are linked to 

mutagenesis and carcinogenesis as well as other potentially important deleterious effects. 

The suite of biomarkers give a measure of exposure and biochemical effects of which the 

observation of DNA adducts can be marked as a deleterious effect. DNA adducts are 

generally determined in the liver, since this is the key organ for biotransformation of 

xenobiotics. Levels of hepatic DNA adducts may be indicative of cumulative exposure of 

fish to genotoxic compounds over a longer period of time (several months). The JAMP 

recommended technique (OSPAR, 2003) for measuring DNA adducts is the P-32 post-

labeling technique. The primary reason for using the P-32 technique is its high sensitivity, 

its requirement for small amounts of DNA and its ability to detect carcinogenic DNA 

adducts of unknown structure. For interpretation it is important to realize that this 

technique may also measure adducts from chemicals other than PAHs.  

In Van der Oost et al. (2003), both laboratory and field studies on DNA adduct 

formation in fish reviewed by Pfau (1997) were presented. The DNA adduct responses for 
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all fish species from 17 laboratory studies and 30 field studies showed that a significant 

increase in hepatic DNA adduct levels was observed in 100% of the laboratory studies and 

70% of the field studies, while strong increases (>500% of control) were observed in 65% 

and 30% of the laboratory and field studies, respectively. Due to the strong and consequent 

responses of hepatic DNA adduct levels to PAHs exposure, this parameter is considered to 

be an excellent biomarker for the assessment of PAH exposure as well as a sensitive 

biomarker for the assessment of potentially genotoxic effects. It is important to combine 

the measurements of DNA adduct and tumor formation to provide insights in the 

mechanisms involved in chemical carcinogenesis (Maccubbin, 1994). 

Hepatic DNA adducts was evaluated one of the most valuable fish biomarkers for 

ERA purposes. 

In her review, Devauchelle (2002) cited Collier et al. in Ware (1995) that found a 

significant positive correlation (r2=0.97) between PAHs in the sediments and DNA adducts 

in fish liver (Opsanus tau) and Akcha et al. (2000) that found a significant positive 

correlation (r2=0.9) between B(a)P concentration in the mussel (Mytilus galloprovincialis) 

and the level of 8-oxoGuo which is correlative to DNA adducts. 

The scientific Seine-Aval program assess the usefulness of monitoring programmes 

using a suite of biological measurements in the Seine Bay (Burgeot, 1999). Among the 

biomarker measured the DNA adducts were determined in European flounder fish 

(Platichthys flesus L.). The results were integrated with EROD and AChE activities to 

define a biomarker indicator according to Beliaeff and Burgeot (1999) and are presented in 

the CYP1A/EROD paragraph above.  

The working Group on Biological Effects of Contaminants (WGBEC) in 2002 

recommended different techniques for biological monitoring programs (JØrgensen et al., 

2000). The bulky DNA Adduct measured in fish assessed the genotoxic effects of PAHs 

and other synthetic organics and is attended to be a sensitive indicator of past and present 

exposure. They proposed a threshold value equal at 2 times the value at the reference site 

and/or 20% of change. 

 

3.3.2.3 Recommendations to use biomarkers as indicators of the assessment of thresholds 

The OSPAR Commission (OSPAR, 2003) warns that biological effects attributable to 

PAH are difficult to assess in shellfish, and therefore selected finfish as the principal 

monitoring species. They recommended that the choice of fish species to be monitored will 

reflect availability throughout the Maritime Area. Dab (Limanda limanda) is common 
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throughout the North Sea and the Irish Sea but is not generally available in the southern 

part of the Maritime Area. The dragonet (Callionymus lyra) provides a suitable alternative 

species. For estuarine monitoring the flounder (Platichthys flesus) is recommended. Other 

species may be chosen according to particular regional concerns.  

Biomarker responses are powerful because they integrate a wide array of 

environmental, toxicological and ecological factors that control and modulate exposure to, 

as well as effects of, environmental contaminants. However, these same factors may also 

complicate interpretation of the significance of the biomarker responses in ways that may 

not always be anticipated (McCarthy, 1990). Many non-pollution-related variables may 

have an additional impact on the various enzyme systems. Examples of such ‘modifying’ 

factors are the organisms’ health, condition, sex, age, nutritional status, metabolic activity, 

migratory behavior, reproductive and developmental status, and population density, as well 

as factors like season, ambient temperature, heterogeneity of the environmental pollution, 

etc. Even if interesting correlation have been found between biomarker and pollutant 

levels, the relevance of those indicators is mainly to determine the biodisponibility of the 

contaminants and those measurements should be related to data’s on confounding factors 

and concentration of chemicals. Despite indications that certain biomarker responses are an 

early warning for adverse effects on the health or fitness of individual organisms, it will be 

hard to correlate these responses with effects on population, community or ecosystem 

levels.   

 
Table 11. Summary of potential biomarkers as indicators of the assessment of thresholds. 
 

Indicator/ Index Mercury  in 
phanerogams 

PAHs bile 
metabolites 

CYP1A and EROD DNA adducts 

Easiness to 
measure 

+++ ++ ++ + 

Sensitiveness to 
pressure 

ND ++ +++ ++ 

Predictable 
response 

ND yes no yes 

Anticipatory Yes yes yes yes 

Predict changes due 
to management 
actions 

ND yes ND ND 

Integrative ND yes yes yes 

Known response to 
disturbances , 
pressures and 
changes over time 

Yes yes no yes 

Low variability ND yes no yes 
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3.4. Trophic levels 

Level 4 applies concentration of entire trophic levels as indicators. An example is 

Trophic Index TRIX, a linear combination of the logarithm of 4 state variables: Chl-a, 

%DO, DIN and TP (Vollenweider et al., 1998; Giovanardi and Vollenweider, 2004), 

adopted to characterize the trophic levels of coastal marine areas. Numerically, the index is 

scaled from 0 to 10, covering a wide range of trophic conditions from oligotrophy to 

eutrophy. The formulation of the TRIX Index is as follows: 

TRIX = [Log10 (ChA × aD%O × minN × TP)+k] / m (1 

Each of the four components represents a trophic state variable, to say: 

a) factors that are direct expression of productivity: 

Chl-a = chlorophyll-a concentration, in µg/l; • 

• 

• 

• 

%DO = Oxygen as absolute % deviation from saturation; 

b) nutritional factors: 

DIN = mineral nitrogen also called dissolved inorganic nitrogen 

(DIN) corresponding to N (as N-NO3+N-NO2+N-NH4), in µg/l; 

TP = total phosphorus, in µg/l. 

The parameters k = 1.5 and m = 12/10 = 1.2 are scale coefficients, introduced to set 

the lower limit value of the Index and the extension of the related Trophic Scale, from 0 to 

10 TRIX units. TRIX point values assign an immediate measurement to the trophic level of 

coastal waters. Referring to the Italian seas, values exceeding 6 TRIX units are typical of 

highly productive coastal waters, where the effects of eutrophication determine frequent 

episodes of anoxia in bottom waters. Values lower than 4 TRIX units are instead 

associated to scarcely productive coastal waters, while values lower than 3 are usually 

found in the open sea. Because of the log-transformation of the four original variables, 

annual distributions of TRIX data over homogeneous coastal zones, are very close to 

normal kind and show a quite stable variance, with STD around 0.9. The Italian law 

covering water protection (152/99) classifies marine coastal waters quality using the 

trophic scale based on TRIX index reported in the table 12.  

TRIX was applied successfully in examination, mapping and comparison of trophic 

states of two European Seas- Adriatic and Black Sea (Doncheva et al., 2002). As a 

principal indicator of coastal water quality contributing to trophic state definition of a 

particular area is considered the ratio phytobiomass/nutrients (Chl-a√NP) (Innamorati and 

Giovanardi, 1992).  
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Table 12.  Trophic classification of the coastal  water quality (from national Italian law 152/99). 
 

Trophic scale Water quality 

2-4 low trophic level; good water transparency; absence of coloured waters; absence 
of oxygen deficiency in bottom waters; 

4-5 medium trophic level; occasional water turbidity; occasional anomalous coloration 
of waters; occasional hypoxia in benthic waters; 

5-6 
High trophic level; bad water transparency; anomalous coloration of waters; 

hypoxia and occasional anoxia in benthic waters; suffering level at benthic 
ecosystem level; 

6-8 
very high trophic level; high water turbidity; diffuse and persistent anomalies in 

colour of waters; diffuse and persistent hypoxia/anoxia in benthic waters; extensive 
benthic organism- kills may also occur; alteration/simplification of benthic 
community; economic damages to tourism, aquaculture, fishing; 

 
The "efficiency" concept (Efficiency Coefficient), better defined as ratio between 

biotic and abiotic components, gives rise to a complex series of interpretative problems; 

however, it assumes a consistent meaning as discriminating function among coastal 

systems. The Efficiency Coefficient is defined as: 

Eff. Coeff. = Log10 ([Chl-a × %DO]/[DIN × TP]) 

to say as the log of the ratio between the two aggregated main components of TRIX. 

Numerically, values are usually negative, ranging in our analyses from –4.48 (recorded in 

the Ionian Sea) to 0.45 (NW Adriatic Sea). The GIGs for Mediterranean Member States 

has provided an update on the intercalibration exercise including the TRIX index as tool 

index to test. Further in the REBECCA project, the TRIX is an index to test and validate 

within Member States. 

The Mediterranean coastal waters in Catalonia (NW Mediterranean) are under a 

monitoring phytoplankton programme since 1990 conduced by the Institut de Ciències del 

Mar (CSIC) and Agència Catalana de l’Aigua, Generalitat de Catalunya (ACA). The 

parameters used are: 

• Harmful Phytoplankton species (composition and abundance); 

• Chl-a (biomass). 

Based on previous knowledge (validation of their database) and expert judgment they have 

established levels for mean Chl-a and frequency and concentrations of harmful algal 

species (HA) (see table 13). 
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Table 13. Established levels for mean Chl a and frequency and concentrations of harmful algal species 
(HA) (Vila and Masó, 2005). 

 

 
 

Harmful algal species considered here are grouped as potentially PSP-producing 

species (Alexandrium catenella, A. minutum), DSP-producing species (Dinophysis acuta, 

Dinophysis caudata, Dinophysis fortii, Dinophysis cf. ovum, Dinophysis hastata, 

Dinophysis rotundata, Dinophysis sacculus, Dinophysis tripos, Dinophysis spp. and 

Prorocentrum rhathymum), Ostreopsis spp., bloom-forming and fish-killing species (A. 

taylori, Dictyocha fibula,, D. speculum, Fibrocapsa japonica, Gonyaulax polygramma, 

Gymnodinium sp, G. pulchellum, Gymnodinium/Gyrodinium impudicum, Gyrodinium 

corsicum, Lingulodinium polyedrum, Noctiluca scintillans, Pratjetella medusoides, 

Prorocentrum minimum, Pseudo-nitzschia spp.). The threshold level in which the 

frequency of HA has been considered is detailed in table 14. Each water body has been 

classified considering the worse score between mean Chlorophyll-a concentration and the 

frequency of blooms. The GIGs for Mediterranean Member States has provided an update 

on the intercalibration exercise including the Catalan Phytoplankton index as tool index to 

test. 

 
Table 14. Frequency of HA’s threshold level (Vila and. Masó, 2005). 
 

 
 

The following ratios could be also proposed as trophic level indicators: total 

phytoplankton biomass to total zooplankton biomass ratio (PhB/ZB), which is a measure of 

the grazing pressure. The typical value is 10:1 (Odum, 1985). It was found that ratio could 

exceed by a factor of 3 for the coastal Black Sea sites and more than 10 times in the 
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eutrophic lakes along the coast (Moncheva et al., 2002). Bacillariophyceae to Copepoda 

biomass ratio (Bac/Cop) and Dinophyceae to Copepoda biomass ratio (Din/Cop), 

reflecting the selective grazing, also differs significantly between eutrophic and non 

eutrophic sites.  

Species are thought to adopt one of three life history strategies for survival in stable 

and unstable environments: (i) r-selection; (ii) K-selection; or (iii) bet-hedging (Smayda 

and Reynolds, 2001). Smayda and Reynolds (2001) in the phytoplankton life-form concept 

recognize the occurrence of invasive, small- to intermediate-sized colonist species (C-

strategists) which often predominate in chemically-disturbed water bodies. Representative 

C-strategists species are Gymnodinium, Heterocapsa, Prorocentrum and Scrippsiella spp., 

Alexandrium minutum, Heterosigma akashiwo, Phaeocystis pouchetii. Typically invasive, 

colonist species of small cell size (ca. 103 µ) are r-selected species. Stable environments 

are characterized by species with a K-strategy, while fluctuating environments are 

characterized by species with an r-strategy. A comparison of Mediterranean (Aegean Sea) 

and Black Sea phytoplankton communities based on such approach is presented in 

Moncheva et al. (2001). 

 

3.5. Rates 

Level 5 uses process rates as indicators. An index obtained from oxygen fluxes is the 

Trophic Oxygen Status Index (TOSI). The TOSI is derived from the Benthic Trophic 

Status Index (BTSI) proposed by Rizzo et al. (1996), and basically represents the net 

potential metabolism. The index results from the relationship between net maximum 

productivity (NP), measured at saturating light, and dark respiration (DR). The index was 

developed to provide a simple portrayal of oxygen processing over time and space for 

shallow aquatic systems and has two modes: a categorical classification and a graphical 

representation (table 15). The categorical classification of the index from autotrophy to 

heterotropy provides a rapid assessment of the potential oxygen balance and thus evidences 

critical situations in the lagoonal metabolism. In the graphical representation of the TOSI, 

three pieces of information are given: the categorical TOSI, the magnitude of flux for both 

NP and DR and the time line of the fluxes.  

Where flushing is slow, the TOSI reflects dissolved oxygen dynamics since the 

NP:|DR| ratio clearly correlates with both the maximum oxygen concentration (MOC) and 

the daily quantity of oxygen remaining in the water column (RO). However, TOSI is less 

well related to MOC and RO in open systems in which oxygen concentrations are 
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dominated by physical factors. The graphical representation of TOSI seems also suitable to 

represent the degree of intrasystem disturbance that is related to the excess of primary 

production and changes in oxygen availability. It can also discriminate among different 

photoautotrophic conditions, including  

hyperautotrophy, as an abnormal oxygen production with respect to the biomass 

build up, and; 

• 

• dystrophy, as the subsequent abnormal oxygen deficit which causes prolonged 

anoxia and the onset of anaerobic metabolism.  

Overall, the index provides a tool for rapid assessment of system metabolism and 

potentially its consequences. 

 
Table 15. A qualification of the categories proposed by Rizzo et al. (1996) with the addition of 

hyperautotrophy and dystrophy. 
 

 
 

3.6. Composite indicators 

Level 6 covers composite indicators to assess whether an ecosystem is at an early 

stage of development or has reached maturity (Odum, 1986). An example of composite 

indicator for the Mediterranean marine coastal and transitional waters is the POMI Index 

(Posidonia oceanica Multivariate Index), a multivariate method to assess ecological status 

of Catalan coastal waters (NE Spain) (Romero et al., 2005). The POMI is based on a 

number of physiological, morphological, and structural descriptors of Posidonia oceanica 

and its ecosystem, combined into a variable using PCA. The method seems to provide 

reliable results, although use is relatively costly, given the high number of variables to 

measure. The descriptors used by the POMI are: 

● Individual level 

● Morphometric measures 

● Shoot surface 

● Percent of necrosis in leaves 
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● Physiological measures 

● Nitrogen content in leaves and rhizomes 

● Epiphyte nitrogen content 

● Phosphorus content in leaves and rhizomes 

● Total non-structural carbohydrates in rhizomes 

● Nitrogen isotopic ratio (d15N) in leaves and rhizomes 

● Sulfur isotopic ratio (d 34S) in rhizomes 

● Trace metals content in rhizomes: Fe, Zn, Mn, Cu, Ni, Pb, Cd, Cr. 

● Population level 

● Meadow cover 

● Shoot density 

● Dominance of rhizome growth type 

Two additional descriptors are currently being tested: 

● Kinetics of depth limit 

 ● Shoot burial 

Most of the descriptors appear to provide pertinent information about the vitality of 

the meadow and more generally about the quality of the environment. Some of them 

provide data about the disturbances in a more specific way, and even allow identification 

of direct and indirect causes of temporal and spatial changes (table 16). In Catalunya, 22 

extensive meadow sites, representative of most of the ca. 500 km of coastline, were 

selected and sampled in October-November 2003 for application of POMI. The GIGs for 

Mediterranean Member States has provided an update on the intercalibration exercise 

including the P.O.M.I. index as tool index to test.  

Another example of composite bioindicator is the Eelgrass, linked with its depth 

limits of eelgrass (Krause-Jensen et al., 2005). The depth limit of eelgrass, defined as the 

greatest depth at which eelgrass grows, is generally regarded as a useful bioindicator, 

because depth limits respond predictably to eutrophication, being largely regulated by light 

availability. The clearer the waters, the deeper eelgrass and other seagrasses grow (Duarte, 

1991; Nielsen et al., 2002). Krause-Jensen et al. (2005), in a ongoing study, analyze how 

the depth limit of eelgrass in Danish coastal waters can be used as a bioindicator of water 

quality under the WFD.  
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Table 16. Directs and secondary impacts on Posidonia oceanica descriptors and their time of answers 
(Pergent-Martini et al., 2005). 

 

 
 

Structural parameters such total abundance and biomass are considered as indicators 

to level 6. For example, indicators for the capacity of the system to produce and sustain 

organic matter are Chlorophyll-a and phytoplankton biomass (WFD, 2000). Zooplankton 

biomass may be used as indicators of trophic condition. There is recent focus on the use of 

biomass size spectra as an indicator of zooplankton response to changes in ecosystems. 

The slope of the size spectra appears to vary with hydrologic conditions, including nutrient 

inputs, thus may serve as a tool to assess the efficacy of nutrient reduction efforts. The 

zooplankton size spectra may be combined with phytoplankton and fish size spectra in 

order to create a whole ecosystem based indicator. The health of the populations typically 

is expressed as a number of individuals (per area) or biomass, reflecting possible stress 

from anthropogenic sources. The shift in phytoplankton species that has attracted the most 

interest is the abundance shift (blooms) from diatoms to other non-motile species and 

flagellates (a functional group shift). Functional groups and their shifts are of interest 

because of significant differences in their physiology and ecological impacts. There is 
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special interest in the diatom:flagellate ratio as a potential indicator of eutrophication, as 

the global increase in harmful microalgal blooms (HABs) is primarily a flagellate-species 

phenomenon (Moncheva and Krastev, 1997). It has been hypothesized that the 

diatom:flagellate ratio should decrease with increasing nutrient enrichment, and 

consequently might serve as an indicator of eutrophication status. Such ratio is normally 

used as an indicator of the taxonomic structure of phytoplankton communities; the typical 

spring-summer value reported for an undisturbed system is 10:1. There is some supporting 

evidence of such value in Kastela Bay (Adriatic Sea) and Varna Bay (Black Sea), where a 

progressive, long-term increase in anthropogenic nutrient has been accompanied by a 

10-fold decrease in the ratio of diatom to flagellate abundance (Marasovic and Pucher-

Petkovic, 1991; Moncheva and Krastev, 1997). The primary nutrient expected to regulate 

the shift in functional groups from diatoms to flagellates is silica, which is required by 

diatoms but not by other microalgal groups exclusive of silicoflagellates (Officer and 

Ryther, 1980). The anthropogenic enrichment of N and P has led to long-term declines in 

the ratios of Si:N and Si:P, potentially favouring non-diatom blooms in such impacted 

regions (Granéli et al., 1990). Mescocosm experiments have led to suggest that there is a 

threshold of approximately 2 µM Si, below which "diatoms, as a group, are outcompeted 

by the `flagellate group'" (Egge et al., 1992). The merit of the Si ratio and threshold 

concepts as eutrophication switches that result in species shifts and altered community 

abundance is still under investigation. However, it is clear that the species-specific 

responses to these proposed Si effects are under multifactorial control rather than simple 

linear responses. For example, Sommer's experiments (1994) have shown that diatoms 

became dominant at Si:N ratios >25:1, while flagellates were superior competitors at lower 

ratios. The ratio of the biomass of the common crustaceans Cladocera:Copepoda is also an 

indicator for changes in size spectrum and quality of phytoplankton (Kamburska et al., 

2003). Generally, the percentage share of Cladocera biomass increased in waters with 

higher trophic levels and indicates a significant nutrient loading. The ratio is also 

anindicatore for meteorologial/climatological variability (Vuorinen et al., 1998). Thus 

significant decrease of the copepoda/cladocera biomass ratio is the result of decreasing 

salinity due to the long-lasting freshwater run-off and reduced salt-water intrusions from 

the North Sea.  
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Diversity indices 

These quantify and simplify the species richness and diversity of ecosystems into a 

single number that can be used to assess the state of the community (Washington 1984). 

Different types of diversity indices for illustrating the community structure have been 

developed (Pielou 1975, Washington 1984), for these to be useful in eutrophication-related 

phytoplankton classification, must be (Tsirtsis and Karydis 1998) 

 sensitive to changes in phytoplankton community structure  

 robust to the requirements of statistical analyses 

 efficient to distinguish different eutrophic conditions 

Measuring diversity is one of the mostly used methods for assessing environmental 

disturbances, so that some indices are based on diversity values. The hypothesis is that 

large portion of native species richness is required to maximize ecosystem stability and 

function (Schwartz et al., 2000). GESAMP (1995) has published a list of biological 

indicators, which are more applicable to long-term series for measuring the biological 

response to the evolution of anthropogenic eutrophication. Recently, several diversity 

indices have been applied and tested demonstrating their usefulness for detecting and 

evaluation (PRIMER 5, 2001). The most common used diversity index is the index of 

Shannon-Weaver (1963), also calculated as a classical measure of stability (% of 

dominance increase under stress), and applied for pelagic and benthic assemblages. The 

ratio of the number of exotic (aliens) to endemic species by taxonomic groups 

(Ei=exotic/endemic×100) is a measure for the extinction of local species (Zaitzev and 

Ozturk, 2001; Moncheva and Kamburska, 2002; Kamburska and Moncheva, 2003). 

To level 6 could be referred energetic category indicators such as Production vs. 

Respiration (P/R): in classical ecology, the trophic state of a system is determined by the 

equilibrium between the oxygen producing autotrophic metabolism and the oxygen 

consuming heterotrophic metabolism. Therefore, the P/R diagram is a means of 

summarizing the trophic state, autotrophic-heterotrophic state, of an aquatic system during 

its evolution in time and space. , Autotrophic-heterotrophic diagrams (P/R diagrams) show, 

on the y-axis, the intensity of the metabolic production of oxygen or carbon in the system 

(P, algal photosynthesis) and on the x-axis, that of the processes of oxygen consumption or 

of organic matter degradation (R, respiration of bacteria, zooplankton and the benthos as 

well as of phytoplankton). The systems at equilibrium have an oxygen concentration at 

saturation level and fall on the diagonal, with increasing distance from the origin as the 

biological activity rises. Predominantly autotrophic systems, net producers of oxygen, lie 
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above the diagonal (P/R >1), while the systems dominated by heterotrophic processes, net 

consumers of oxygen, fall below the diagonal (P/R <1). That indicator was applied for 

river watersheds in order to assess the ecological functioning. Theoretically, an increase in 

community respiration should be the first early-warning sign of stress since repairing 

damage caused by the disturbance requires diverting energy from growth and reproduction 

to maintenance. Net primary production compared to the sum respiration by heterotrophs is 

used at the scale of river watersheds to determine their functional ecological equilibrium. 

Autotrophy is evaluated by a P/R > 1, with possible symptoms of eutrophication, when P 

reaches 1mg C/m2/day. On the contrary P/R <1 reveals heterotophy of the system, and an 

organic pollution at R from 1mg C/m2/day.  

Finally, IFREMER developed a classification scheme for French Mediterranean 

lagoons (Souchu et al., 2000). The scheme is based on the identification of physical, 

chemical and biological potential indicators potential of eutrophication in the various 

compartments of the lagoon ecosystem (benthic, phytoplankton, macrophytes, macrofauna, 

sediments and water). It allows the classification of a lagoon into five eutrophication 

levels, formalized by five different colours: blue, signifying no eutrophication, to red, 

signifying high eutrophication. Results of the exercise allow immediate identification of 

the compartment in which degradation has developed. Table 17 presents a typical layout of 

results from such procedure. The final evaluation of the general ecosystem‘s state is equal 

to the one of the compartment with the lowest classification results. The diagnosis tool 

consists of five quality categories, defined using the same colour scheme from the Water 

Framework Directive (WFD), as in the legend of table 17.  Boundaries for the various 

components were determined by taking of account the states of the lagoons obtained 

starting from the diagnosis of eutrophication (table 18). Further details on the classification 

procedures for each of the compartments included in te scheme can be found in Souchu et 

al. (2000). 

 

3.7. Holistic indicators 

Under this level are the holistic indicators such as resistence , resilience , buffer 

capacity, biodiversity, all forms of diversity, size and connectivity of the ecological 

network, turn over rate of carbon, nitrogen and energy. 

The buffer capacity, defined as: 

function) forcing(/ variable)state(
1
δδ

β =  
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is another quantity that has been used when studying suitable indicator for inland and 

marine water ecosystems. The buffer capacity consists of a set of values, rather than one 

value, depending on which internal variable and forcing function we are using; it is also 

related to the parametric sensitivity of the ecosystem. 

 
Table 17. General Results Table (Souchu et al., 2000). 
 

 SEDIMENTS 

 PHOSPHOROUS in the sediments 

 PHYTOPLANKTON 

 MACROPHYTES 

 PROLIFERATIONS 

 BIOLOGICAL POTENTIAL MACROBENTHOS 

 GENERAL EUTROPHICATION STATUS 

Legend: 
VERY GOOD                  GOOD                   MODERATE                 SUFFICIENT                 BAD 

 
 
Table 18. Selected variables for characterisation of eutrophication status. 
 

Phytoplankton Macrophytes Macrobenthos Sediment Water column 
Nr. Cells < 2 µm 
Nr. Cells > 2 µm 

 

Climax species biomass 
Species diversity 

Species richness 
Population density 

Organic matter 
Total nitrogen 
Total phosphorous 

Dissolved oxygen 
Turbidity 
SRP 
N-NO2 
N-NO3 
N-NH4 
Chlorophyll a 
Chlorophyll a/phaeo 
Total nitrogen 
Total phosphorous 

 

3.8. Thermodynamic indicators 

 Level 8 indicators are thermodynamic variables able to enclose all ecosystem 

characteristics, e.g. exergy, specific exergy, emergy, entropy production, etc.  

3.8.1. Exergy and Specific exergy 

Exergy is defined as the amount of work a system can perform when it is brought to 

thermodynamic equilibrium with its environment or reference state, the latter defined as 

the primordial inorganic soup present on Earth some 4 billion years ago (Jørgensen, 1997). 

The exergy (Ex) of a system cannot be measured, but may be computed for each system 

component by multiplying its concentration, ci, measured in terms of its average standing 

biomass, with its genetic information content, Wi, using conversion factors: 
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where R is the ideal gas constant, T the temperature. 

Exergy has been presented as a goal function in ecosystems development, i.e. 

ecosystems evolve towards a state of higher exergy (Jørgensen, 1997). It also expresses the 

energy expended in the organization and construction of living organisms, by accounting 

for the genetic information accumulated within organisms (the higher the organization of 

an organism, the higher its exergy). 

Related to the exergy concept, Jørgensen (1997) introduced the concept of specific 

(or structural) exergy, which is the exergy calculated relatively to the total biomass: 
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where ct is the total biomass concentration, which is the sum of all ci including inorganic 

matter available to growth of biomass. Specific exergy express the dominance of the higher 

organisms because, per unit biomass, they carry more information, that is, they have higher 

W-values. A very eutrophic ecosystem will have a very high value of exergy due to the 

large biomass, but the specific exergy will be low, as the biomass will be dominated by 

species with low W-values. The combination of the exergy and specific exergy indexes 

usually gives a more satisfactory description of the health of an ecosystem than the exergy 

index alone, because it consider diversity and life conditions for higher organisms.  

The combination of exergy, specific exergy and buffer capacities has been used as an 

ecological indicator for lakes (Xu et al., 1999) and coastal areas (Jørgensen, 2000). The 

results of these studies show that high exergy, high specific exergy and high buffer 

capacities are indicative of a healthy ecosystem. However, it seems that there are other 

parameters that could also be considered as indicators of ecosystem health, and which are 

not correlated with those values; hence, use of these three indicators only is probably not 

sufficient for complete characterization of an ecosystem. For example, Jørgensen (2000) 

shows that exergy or specific exergy are not correlated with diversity (defined in this case 

as the number of state variables of the model) or with complexity (defined as the product 

of the number of state variables times the connectivity in the model). Replacing activities 

by concentrations, under the assumption that there is no change in pressure and 

temperature between both systems, it is possible to calculate the exergy of the living 

system and that of the same system in the form of an inorganic soup without life, 

biological structure, information or organic molecules, as: 
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where ci is the concentration of the i-th component expressed in a suitable unit, ci
0 is the 

concentration of the i-th component at thermodynamic equilibrium and n is the number of 

components (i=0 stands for inorganic compounds). To calculate the ci
0, which is in general 

a very small number, one can use the probability Pi to find the i-th component at 

thermodynamic equilibrium (Jørgensen, 1997): 
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As the inorganic component, i=0, will be the dominant one at equilibrium, we may 

assume that 

0
0

0

c
c

P i
i ≈  (5) 

For the case of detritus (dead organic matter, i=1) this can be found from 

thermodynamics: 
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The difference between the chemical potentials  is a known quantity for 

detritus (mixture of carbohydrates, fats and proteins), and hence, we can write: 

0
11 µµ −
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1 RTcc µµ −−=  (7) 

Substituting Eq. (7) into Eq. (5), we get, for i=1: 

]/)(exp[ 0
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For the biological components, Jørgensen et al. (1995) suggested an approximate 

procedure to calculate the exergy for organisms that overcomes the problem of defining 

reference states for different components under different conditions. Based on the 

assumption of a common reference state (detritus or dead organic matter), they defined the 

exergy in terms of the probability Pi as: 

aii PPP ,1 ⋅= ;  (for i ≥ 2; 0 covers inorganic compounds and 1 detritus) (9) 

where P1 is the probability of i for producing organic matter (detritus) and Pi,a is the 

probability to obtain the information embodied in the genes. Living organisms use 20 
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different amino acids and each gene determines the sequence of about 700 amino acids, 

and, hence 
g

aiP ⋅−= 700
, 20  (10) 

where g is the number of genes. 

By combining Eq. (6) and (8) we can write: 
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Assuming that the inorganic component, i=0, may be omitted because negligible, and 

that: Pi<<ci, Pi<<P0, 1/Pi>>ci and 1/Pi>>ci/c0
0 (Jørgensen, 1997), we obtain: 
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Combining Eq. (12) with Eqs. (8) and (9) the following expression is obtained: 
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It has been found that for detritus the free energy released is about 18.7 kJ/g organic 

matter. Assuming an average molecular weight of 105 g/mol, T=300 K and R=8.314 

J/(mol.K), we obtain: 

1
51 105.7 c

RT
Ex

⋅≈  (14) 

where ci is the detritus concentration expressed in g/l. 

Assuming that a typical monocellular phytoplankton cell has 850 genes (Li and Grau, 

1991), then: 
6850700

, 1078.1)20ln()ln( ⋅=−=− ⋅−
aphyP  (15) 

and hence, 
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For pluricellular organisms it is necessary to include not only the number of genes, 

but the number of cells of the organism, i.e. . Assuming that 

zooplankton has 105 cells and 10000 genes (Cavalier-Smith, 1985; Levin, 1994) then: 
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and hence, 
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Then the exergy value may be found as the concentration of various components ci 

multiplied by a weighting factor Wi, which reflects the exergy that the various ecosystem 

components possess due to their chemical energy and to the information embodied in their 

DNA: 

i

n

i
i cW

RT
Ex

⋅= ∑
=1

 (19) 

By dividing by 7.5.105 we can convert all values to g detritus exergy equivalents l-1. 

In this case, for example the exergy of an ecosystem containing detritus (D), phytoplankton 

(P) and zooplankton (Z), could be expressed as: Ex/RT=D+3.4.P+29.Z. 

As explained above, Jørgensen et al. (1995) proposed, for the estimation of the 

information content, Wi, to take into account the number of genes. Currently, data on the 

total number of genes for most organisms are not available, which makes this variable 

difficult to calculate. Consequently, the genetic information content must be estimated, and 

this introduces a source of uncertainty into the exergy calculations. Often the values listed 

did not include a taxon being considered in this ecosystem, resulting in additional 

uncertainty in their estimation. To overcome such uncertainty, Fonseca et al. (2000) have 

suggested a more operational approach by using the haploid nuclear DNA contents of 

organisms (C-values) to use nuclear DNA contents of organisms. The nuclear DNA 

content replaces the term ‘700.g’ in the evaluation of Wi in the exergy calculations. In this 

work, genetic information content has been estimated using values from Jørgensen (2000) 

with the exception of shellfish for which we have used the method from Fonseca et al. 

(2000). Estimates of nuclear DNA contents in picograms (pg) were taken from the report 

by Fonseca et al. (2000), which correspond to a certain number of base-pairs (bp) in the 

DNA (1pg = 0.98.109 bp). The term C* denotes the conversion to base-pairs. C* is divided 

by 2 to give the number of nucleotides in one polynucleotide chain (one DNA strand), 

represented by C**. Under the assumption that for each adjacent triplet of nucleotides in 

non-repetitive DNA corresponds a transcribed RNA-signal, this number is then divided 

again by 3 to give the number of nucleotide triplets (maximum coding capacity), 

represented by C***. C*** is the value, which replaces the term ‘700*g’ in Eq. (10), 

becoming: ln 20 C***. Table 19 indicates the values used for the calculation of the genetic 

information content, in brackets there are some of the values provided by Fonseca et al. 

(2000). 
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Table 15. Example of parameters used to evaluate the genetic information content, from Jørgensen 
(2000). 
 

Ecosystem 

component 

Number of information 

genes 

Conversion 

factor (Wi) 

Detritus 0 1 

Bacteria 600 2.7 (2) 

Flagellates 850 3.4 (25) 

Diatoms 850 3.4 

Micro-zooplankton 10000 29.0 

Meso-zooplankton 15000 43.0 

Ulva sp.       2000 (1) 6.6 

Seagrass 10000(1) 29.0 

Shellfish (Bivalves) - 287(2-3) 

Coffaro et al. (1997), (2)Marques et al., (1997), (3)Fonseca et al, (2000) 
 

The method used by Fonseca et al. (2000) is considered to be a more accurate 

estimate, as it accounts for inconsistencies in the genome size-structural complexity, 

central hypothesis of the concept of ecosystem exergy. However, the two methodologies 

seem to give very similar results in the exergy calculations. 

Concerning the detection of thresholds, it is easy to see that exergy and specific 

exergy will give valuable information. For example, considering the case of ecosystem 

shift from benthic to planktonic as in S3-WP2, in which nutrient load favors the growth of 

fast primary producers that reduces the light availability for benthic vegetation, it is 

possible to see that such a change will produce a reduction of specific exergy, as seagrasses 

(e.g. Zostera noltii) have an information content (Wi) of about 29 whereas Ulva sp. Has a 

value of about 6.6. Furthermore, specific exergy has proved to be able to detect changes 

from normal conditions to hypoxia in coastal lagoons (Zaldivar et al., 2005) subject to 

shellfish farming and macroalgae blooms. 

 

4. CONCLUSIONS 

 

Template for initiation of the process of selection of indicators and for summarizing 

the information on selected indicators  
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Mouillot 
et al. 2005  
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EROD 
CYP1A 

Orga
nic chemical 

X X   Van de 
oost et al, 2003 

DNA 
adduct 

PAH X X   Van de 
oost et al, 2003 

PAH 
metabolites 

PAH X X   Van de 
oost et al, 2003 

AchE pestic
ides 

X X   Beliaeff, 
Bocquene 
(2004). 

Metallo
neins (MTs) 

metal
s 

X X   Van de 
oost et al, 2003 

   

 

 

1 Examples of indicators for this component are physical lesions and deformations, and parasite load. 
2 Examples of indicators for this component are range size, presence and frequency of occurrence. 
3 Examples of indicators for this component are number of populations, age or size structure and dispersal 

behaviour. 
4 Examples of indicators for this component are species richness, species evenness number of trophic levels. 
5 Examples of indicators for this component are spatial distribution of communities and persistence of habitats. 
6 Examples of indicators of ecosystem composition integrity are presence, abundance, frequency, cover, biomass, 

richness, evenness, diversity, presence and proportion of indicator species. 
7 Examples of indicators of ecosystem structure integrity are dispersal, range, population structure morphological 

variability, substrate and soil conditions, slope, aspect, living and dead biomass, patch size, patch and distribution. 
8 Examples of indicators of ecosystem function are demography, population changes, life history, acclimatisation, 

biomass, decomposition, herbivory, parasitism, predation and rates of nutrient cycling. 
9 Note that this table is only for the purposes of initiating the process of selection of indicators and summarising 

that information. However, each indicator purposed should be accompanied by more detailed information on how it is 
calculated, how it relates to anthropogenic pressure, ecosystem where it has applied (e.g. coastal lagoons), and its 
envisaged applicability in the Thresholds IP. It should also include references to the available literature. 
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